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I. INTRODUCTION

Random graph theory �1–3� is a fascinating branch of
mathematics, at the frontier between classical graph theory
and probability. Since the seminal work of Erdös and Rényi
�4� the properties of various random graph ensembles have
been thoroughly studied. Random graphs have been often
encountered in the recent statistical mechanics literature, in
at least three contexts. In the first one, pioneered by Viana
and Bray �5�, they provide a convenient family of models of
disordered systems which enjoy the remarkable analytical
properties of mean-field models, while retaining a limited
notion of geometry lost in the fully connected models of the
Sherrington-Kirkpatrick �6� type. A second family of statis-
tical mechanics papers is also related to random graphs, but
takes a somehow inverse perspective: one studies carefully
chosen disordered models with the aim of obtaining a de-
tailed description of the underlying random graph ensemble
�see, for instance, �7–11��. A third, yet related to the second,
family of works are the studies of real-world networks,
where random graphs are used as benchmarks for compari-
son to experimentally collected data �12�.

A large fraction of the above mentioned research has been
concerned with the presence of particular subgraphs �some-
times called patterns or motifs� inside a given, possibly ran-
dom, graph. For concreteness let us consider the case where
the pattern is a cycle of length L, i.e., a closed, nonintersect-
ing path of L adjacent vertices. Several variants of the prob-
lem can be stated. The first is the existence problem. For a
given graph, for instance, a real-world network, one can ask
whether or not there is such a cycle. In the random graph
context, the question amounts to computing the probability
of presence of this pattern, with respect to the choice of the
graph in the random ensemble. In some interesting cases this
probability can present a threshold phenomenon; as some
external parameter defining the ensemble is varied, the limit
of this probability when the size of the graphs goes to infinity
can be either 0 or 1. A second, more demanding problem is
the one of counting: given a graph, how many repetitions of
the pattern can be found? Or for a random graph ensemble,
what is the distribution of the random variable counting this
number of occurrences? A third version, which shall be the
main focus of this paper, is the finding problem: can one
actually exhibit one example of the pattern in a proposed
graph?

The answer to these questions depends a lot on the length
L of the cycles under consideration. As long as L is much

smaller than the total number N of vertices, the various prob-
lems are relatively easy. Short cycles are not too numerous
and can thus be counted by exhaustive enumeration �13,14�,
which provides as a side result an answer to the existence
and finding problem. Moreover, for most random graph en-
sembles the distribution of the number of cycles of finite
length can be easily computed in the limit where the total
number of vertices diverges. These problems become much
more difficult when one considers cycles whose length is a
finite fraction of the total number of vertices �15,16�, for
instance, Hamiltonian cycles, i.e., those of length N. Indeed,
such long cycles can be exponentially numerous, preventing,
for instance, the use of exhaustive enumeration when not
dealing with very small graphs. More formally, deciding the
existence of a Hamiltonian cycle is known to be an NP-
complete problem �17�. Because of the large fluctuations of
the exponential number of long cycles, their distribution is
known only in the special case of random regular graphs �18�
where all vertices have the same degree, and which are
known to be Hamiltonian with high probability �19�. In this
restricted case there exists an algorithm for finding Hamil-
tonian cycles in polynomial time �20�.

The typical number of long cycles in a large class of
random graphs has been studied with statistical mechanics
methods in �9�. In the present paper we extend this approach
to the finding version of the problem, i.e., we propose some
algorithms which attempt to unveil large cycles in a graph. A
special emphasis will be put on the following issue. As men-
tioned above, random regular graphs of degree larger than or
equal to 3 are known to be Hamiltonian with high probabil-
ity. Wormald conjectured in �3� that this remains true for
random graphs where all vertices have degrees in �3,kmax�,
with kmax�3 a finite integer. The nonrigorous approach of
�9� reached the same conclusion and provided a prediction
for the typical number of Hamiltonian cycles in graphs of
these ensembles. In the present paper we shall see that the
algorithms we propose are indeed able to explicitly construct
Hamiltonian cycles of these graphs.

The paper is organized as follows. Section II is devoted to
a presentation of more formal definitions. Two distinct ap-
proaches to the problem are presented in Secs. III and IV,
with technical details of the implementation deferred to two
appendixes. We draw our conclusions in Sec. V.
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II. DEFINITIONS

An undirected graph G is defined by a set V of N vertices,
and a set E of M unordered pairs of vertices, the edges. The
graphs considered in this paper are simple, i.e., neither self-
loops �edges from one vertex to itself� nor multiple edges
between the same pair of vertices are allowed. Two vertices i
and j are said to be adjacent if the edge �i , j� belongs to E.
The degree �or connectivity� of a vertex is the number of
edges it belongs to. The neighborhood �i of vertex i denotes
the set of edges in which i appears, or the set of adjacent
vertices, without possibility of confusion.

A cycle �or circuit� of length L is a closed nonintersecting
path of G, more formally a sequence of L distinct vertices
�i1 , . . . , iL� such that in is adjacent to in+1 for all n� �1,L
−1�, and i1 is adjacent to iL. A graph G is said to be Hamil-
tonian if it admits a Hamiltonian cycle, i.e., a cycle of length
N which visits all the vertices of G.

We identify a subgraph of G, a cycle, for instance, by the
set of its edges. For the ease of notation, let us associate to
each edge �i , j�= l� �1,M� of G a discrete variable Sl

� �0,1�. Each of the 2M possible subgraphs of G is unam-
biguously associated to a configuration S� = �S1 , . . . ,SM�, with
Sl=1 �respectively 0�, if edge l is present �absent� in the
subgraph. We also introduce the notation S� i= �Sl � l��i� for
the configuration of the edges around vertex i.

Besides cycles as defined above, we shall also encounter
subgraphs of G which are unions of vertex disjoint cycles.
When all the vertices of the graph are covered in this way,
the subgraph is called a cycle cover, or a two-factor. By
definition Hamiltonian cycles are cycle covers made of a
single cycle, but obviously not all cycle covers are Hamil-
tonian cycles. Even if apparently similar, the decision prob-
lems concerning the existence of a Hamiltonian cycle or of a
cycle cover have very different computational complexity.
The first one is in the NP-complete class �17�, whereas the
second can be mapped, thanks to a theorem of Tutte �21�, to
the existence of a perfect matching in a dual graph of similar
size, a task for which polynomial time algorithms are known
�22�.

We shall test our algorithms on graphs drawn from the
fixed degree distribution ensemble, discussed, for instance,
in �23,24�. We choose our random graphs uniformly among
those with degree distribution q�k�, a given probability dis-
tribution on positive integers k�3.1 The generation of such
graphs, based on the configuration model �25�, is done as
follows. For each value of k a subset of Nk=Nq�k� vertices
are assigned degree k, and k “half links” are drawn around
each of them. The half links are then paired in a uniform
random way. If the graph generated is not simple, it is dis-
carded and the generation starts again. It can be shown �3�
that this procedure respects the uniformity over the graphs

with prescribed degree distribution. Regular random graphs
of degree c are a particular case of the above model, where
all vertices have the same degree c, i.e., qc�k�=�k,c. We shall
also consider the distribution

qc1,c2

� �k� = �1 − ���k,c1
+ ��k,c2

, �1�

which interpolates between two different regular ensembles
as � varies in �0,1�.

The goal of the algorithms presented in the following is to
discover the longest cycles in a given graph. The class of
graphs we investigate �random with minimal degree larger
than 3 and bounded maximal degree� are expected �3,9� to be
Hamiltonian with high probability when their size diverges.
We thus aim at finding Hamiltonian cycles, or at least cycles
covering almost all vertices of the graphs. Because of the
intrinsic complexity of the Hamiltonian circuit problem we
do not expect that these algorithms should be valid for all
graphs, but at least for the class of sparse graphs satisfying
the degree constraints explained above.

III. BELIEF INSPIRED DECIMATION ALGORITHM

A. Description of the algorithm

Let us first introduce in generic terms the principles un-
derlying the algorithm we develop in this section. Consider
an arbitrary discrete set of configurations S� = �S1 , . . . ,SM�, a
subset H that one would like to sample and define Prob�S� � as
the uniform probability measure on H, i.e., Prob�S� �=1/ �H� if
S� �H and zero otherwise, where �H� is the number of con-
figurations in H. A possible scheme for the sampling from H
is the following. Initially all Sl are undetermined. For n in-
creasing from 1 to M, choose arbitrarily an index ln of one of
the still nonfixed variables, and draw Sln

according to its
marginal law conditioned on the previous choices,
Prob�Sln

�Sl1
, . . . ,Sln−1

� �for n=1 there is no conditioning�.
The configuration produced at the end of this “decimation”
process is clearly uniformly distributed on H. However, ex-
cept in particularly simple situations, it is not possible to
implement this method as it is, the marginal laws used above
being in general very difficult to compute exactly.

In the context of this paper we would ideally like to fol-
low this road taking for the set H the longest cycles of the
graph under study. The output configuration would then pro-
vide us with the length of these longest cycles and one of
their representatives. There is no serious hope for a practical
implementation of this idea in an exact way: note, for in-
stance, that it would, as a side result, solve the Hamiltoni-
anicity decision problem, which, being NP-complete, is not
expected to have a polynomial time algorithm.

Therefore we turn to an approximated version of this ideal
strategy, similar in spirit to the survey propagation algorithm
introduced by Mézard and Zecchina for constraint satisfac-
tion problems �26� �for a detailed algorithmic description of
this approach, see also �27��. We first define a probability law
on the subgraphs of G,

1Vertices of degree 0 and 1 can indeed be eliminated by reducing
the graph to its two-core, outside of which no cycles can be drawn.
When a finite fraction of degree 2 vertices is allowed, the graphs are
expected to be non-Hamiltonian with high probability �9�. The
longest cycles of such graphs could also be studied, at the price of
some technicalities we decided to avoid.
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Prob�S� � =
1

Z
u�lSl	

i

wi�S� i� , �2�

where wi�S� i�=1 if �l��iSl� �0,2�, wi�S� i�=0 otherwise, u is a
real parameter and Z a normalization constant.

This allows only subgraphs made of vertex disjoint cycles
�each node of the graph must be surrounded by either zero or
two edges�. Their weight is proportional to uL, where L is the
total length of these cycles. In the case of u=1 this leads to a
flat sampling among vertex disjoint cycles of any length.
When u goes to +�, the probability converges to the uniform
law on the largest of these subgraphs, in particular cycle
covers if the graph admits them. Allowing for unions of sev-
eral cycles leads us away from the ideal strategy but is a gain
in analytical simplicity: the interactions in Eq. �2� are local,
i.e., involve only a finite set of neighboring variables. This
opens the way to several approximate treatments, of the
mean-field Bethe approximation flavor. We shall indeed use
belief propagation �BP�, a message passing algorithm widely
used for solving inference problems �see �28� for a review
and for the connection with the Bethe free energy�. This
approach was followed in �9� in order to compute the nor-
malization constant Z, and hence the number of allowed con-
figurations. One can easily adapt these results for the relevant
question here, i.e., the computation of the marginal probabili-
ties of presence of an edge l in the law �2� conditioned on
some of the variables being fixed.

When using the BP algorithm, we work directly in the
limit u→ +�, where the measure concentrates on the longest
configurations. In this limit, the fact that sites of degree 2 are
not allowed implies a number of analytical simplifications
�9�. Let us consider the set E of edges of the graph. We
assume that some of them are constrained to be present, i.e.,
have Sl=1, and call the set of these edges E1, and that some
of them are constrained to be absent, i.e., have Sl=0, and call
this set E0. The edges of E*=E \ �E1�E0� are called nondeci-
mated. We introduce for each nondecimated edge l= �i , j� a
pair of real variables yi→j and yj→i, “messages” sent by ver-
tex i to vertex j and vice versa. The BP estimate for the
probability of presence of edge l in this conditional law reads

pl = Prob�Sl = 1�E0,E1� =
yi→jyj→i

1 + yi→jyj→i
, �3�

where the messages are solutions of the BP equations. These
express the value of a message yi→j in terms of the messages
along the neighboring edges and the status �decimated or
not� of the edges. Let us denote �*i \ j the set of vertices k
adjacent to i, distinct from j such that �i ,k� is a nondeci-
mated edge. We have to consider two cases:

�i� if all the edges in �i \ j are either nondecimated or con-
strained to be absent,

yi→j =

�
k��*i\j

yk→i

1

2 �
k,k���*i\j

k�k�

yk→iyk�→i

; �4�

�ii� if exactly one edge in �i \ j is constrained to be
present, the others being either nondecimated or absent,

yi→j =
1

�
k��*i\j

yk→i

. �5�

If two edges in the neighborhood of i are constrained to
be present, the others are set to absent and the messages
along these edges are no longer considered in the BP algo-
rithm. Cases in which three or more edges incident to i are
present are not allowed due to the constraints wi�S� i�. We refer
to �9� for details on the derivation of these equations.

We can now describe a possible implementation of the
proposed algorithm. Initially, all edges are nondecimated
�E0=E1= � � and we set all messages to a random value in
�0,1�. The algorithm then proceeds by repeating the follow-
ing two steps.

�i� Belief Propagation step. A solution of the BP equations
is searched by iterating Eqs. �4� and �5�; all messages are
updated in random sequential order. This operation is re-
peated a certain number of times to get sufficiently close to
the fixed-point solution. In our implementation we stopped
the iterations when either the average modification of a mes-
sage is lower than an arbitrary small threshold �set to 10−6 in
the following� or when a maximum number �20� of iterations
fixed beforehand has been reached.

�ii� Decimation and propagation step. We set some of the
nondecimated edges to either present or absent �updating ac-
cordingly E0 and E1�, according to the information given by
the solution of the BP equations found in the previous step.

If the BP procedure were exact, one could choose arbi-
trarily one of the edges in E* and fix it according to its
marginal probability �conditional on E0 ,E1�. However, the
BP estimation of this quantity pl �see Eq. �3�� is only ap-
proximate. Therefore it is safer to fix only the most biased
variable, i.e., the one with pl closer to 0 or 1, to its most
probable value, hoping that this is the least subject to the
imprecision of the algorithm.

Because of the hard constraints encoded in the weight
function wi, fixing a variable might automatically impose the
value of a few others �similarly to the unit propagation rule
in constraint satisfaction problems�. For example, when two
edges around a given vertex have been assigned to present,
the other neighboring edges have to be absent in order to
avoid intersecting cycles. Similarly, if all but two edges
around a given vertex are absent, we set these two nondeci-
mated edges to be present since we are seeking configura-
tions of maximal length. In case we encounter a situation
where only one edge is left undecimated, we set it to present
if there is already another neighboring edge present. Other-
wise, we set it to absent, such that the final subgraph could
still be a cycle �even though not a Hamiltonian one�. It can
happen that this propagation leads to a contradictory situa-
tion in which an edge needs to be both present and absent.
When this occurs, the decimation procedure is stopped pre-
maturely, we re-initialize all messages and all edge variables,
and re-start the complete decimation procedure from the be-
ginning.
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Apart from the effects of this direct propagation, decimat-
ing a single variable does not drastically modify the values
of the messages on the remaining nondecimated edges. Thus
it turns out to be useful to fix several of the most biased
variables before returning to the BP step with a reduced
graph. In practice, we treat all the edges with pl lower than
0.2 or higher than 0.9 in a single decimation step and if there
are no such edges, we simply choose one of the most biased
ones.

We repeat these two steps subsequently until either a con-
tradiction has occurred during a propagation step, or all edge
variables have been assigned a value. We refer to the com-
plete operation as the decimation procedure. If the procedure
is exited without contradiction, we are left with a subgraph
made of vertex disjoint cycles, which can be a cycle cover or
possibly a Hamiltonian cycle.

The output of a decimation procedure is stochastic, since
we use random numbers in the initialization of the BP mes-
sages and in deciding the order of the updates. The algorithm
can thus be improved in a straightforward way. If the deci-
mation procedure result is not satisfactory, one can launch it
again with different random numbers, until one of these deci-
mation procedures produces a satisfactory output �cycle
cover or Hamiltonian cycle�. We set a maximum number of
repetitions equal to 1000. The influence of this arbitrarily
chosen number is discussed in the following section. We
shall also introduce another improvement based on a local
rewiring procedure, that will be interleaved between the rep-
etitions of the decimation procedures, see below for details.

Before entering the discussion of the results of the algo-
rithm, let us note that, in the family of graphs studied here,
one decimation procedure has a computational cost at most
quadratic in the size of the graph. Since for the sparse graphs
we are considering the number of edges is proportional to the
number of vertices, a BP step has linear cost. In a worst case
scenario, only one edge is fixed during each subsequent deci-
mation step, resulting in at most M repetitions of the BP step.

B. Numerical results

We present in Table I a summary of the numerical experi-
ments we conducted with the decimation algorithm. Each

entry of the table is a percentage of success computed on a
set of one thousand graphs of given size and connectivity
distribution. In the CC column we define a successful repeti-
tion of decimation procedures when it terminates with the
finding of a cycle cover �CC�, while in the HC column we
define by success the discovery of a Hamiltonian cycle �HC�.

Consider first the three leftmost columns of Table I, con-
cerning regular graphs of degree 3, 4, and 5. For these cases
we employed the decimation procedures in the simplest way:
on each graph we repeated a decimation procedure until the
output configuration was a Hamiltonian cycle, or until a
maximal number of trials had been reached. This approach
turns out to be very efficient. For all the regular graphs in-
vestigated, we find a Hamiltonian cycle after about ten trials
on average, i.e., well before reaching the cutoff of a thousand
repetitions. The efficiency of this procedure is a priori sur-
prising. If the marginal probabilities were computed exactly
the output configurations would be distributed among the
various cycle covers of the graph, a set which contains the
Hamiltonian cycles but could be much larger. It was, how-
ever, argued in �9� that, at the leading exponential order,
these two sets have roughly the same size �rigorous argu-
ments of this kind were used in �20,29��. Hence by generat-
ing enough distinct cycle covers one of them is eventually a
Hamiltonian cycle.

This simple procedure is less efficient on the nonregular
graphs �with a degree distribution given by Eq. �1�� that we
investigated, as shown in the three rightmost groups of col-
umns of Table I. The percentage of graphs for which a
Hamiltonian cycle is found within the first thousand repeti-
tions of the decimation procedure is shown in the columns
HC-DEC. When the graphs get denser the success probabil-
ity drops.

A more detailed look at the outputs of the algorithm re-
veals that in almost all of the graphs a cycle cover has, how-
ever, been found �columns CC�. This motivated the search
for a simple way to convert a cycle cover, obtained with the
decimation procedure and composed of several vertex dis-
joint cycles, into a Hamiltonian cycle. The main idea is to
join two or more cycles by doing some local rewiring �LR�
among the edges: we discuss the details of such rewiring in
Appendix A. In practice, when the decimation procedure

TABLE I. Percentage of cycle covers �CC� and Hamiltonian cycles �HC� found with the decimation
procedure �DEC�, possibly combined with the local rewiring procedure �LR�, for various connectivity dis-
tributions �qc�k�=�k,c or is defined as in Eq. �1�� and graph sizes. Each entry was obtained by investigating
a thousand different samples.

N
q3

HC
q4

HC
q5

HC

q3,4
0.5 q3,5

0.5 q4,5
0.5

CC

HC

CC

HC

CC

HC

DEC LR DEC LR DEC LR

100 100.0 100.0 100.0 99.9 96.0 99.6 98.9 69.9 92.9 98.7 56.9 96.0

200 100.0 100.0 100.0 99.6 96.2 99.3 99.7 71.1 95.2 98.9 50.0 96.0

400 100.0 100.0 100.0 99.7 96.4 99.2 99.9 67.7 95.4 98.9 50.7 94.2

800 100.0 100.0 100.0 99.8 96.7 98.7 99.6 68.9 95.7 99.6 46.8 94.5

1600 100.0 100.0 100.0 99.7 97.8 98.7 99.9 68.6 92.0 99.9 52.3 94.0
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ends with a cycle cover different from a Hamiltonian cycle,
we apply this LR algorithm to try to recover a Hamiltonian
cycle. Again, if this extended decimation procedure does not
produce the desired result, it is repeated no more than a
thousand times.

The success rate of finding Hamiltonian cycles with this
combined strategy �columns HC-LR� is much higher with
respect to the simple one �HC-DEC�. In fact, by using this
extended version, it now almost matches, up to a few per-
centage points, the fraction of graphs for which we were able
to find a cycle cover. The added value of including this local
rewiring algorithm reduces slightly with the size of the graph
and when the average graph degree increases. Note, how-
ever, that even in “half successful” graphs, i.e., when a cycle
cover but no Hamiltonian cycle is found, the cycle cover
always contains one long �extensive� cycle, whose length
gets closer to N for increasing graph sizes.

Let us now evaluate the efficiency of the algorithm, which
necessarily turns out to be a tradeoff between the success rate
and its time requirements. We have to distinguish two points.

A first point was already mentioned at the end of Sec.
III A and concerns the computational cost of a single deci-
mation procedure, that we argued to be quadratic in the size
of the graph. This is confirmed by the plot of Fig. 1: the
average number of decimation steps performed during a
decimation procedure scales linearly. Moreover, as we al-
lowed several variables to be fixed during a single decima-
tion step, this number is smaller than M, the worst-case es-
timate.

A second crucial point concerns our choice �one thou-
sand� for the threshold on the number of repetitions of the
complete decimation procedure �that can be possibly
complemented by an attempt of patching the cycle cover�.
This is the moment when we give up our search of a Hamil-
tonian cycle: obviously such a choice has a direct effect on
the percentages of success we presented in Table I.

In Figs. 2 and 3 we plot the integrated distributions of the
number of decimation procedures �alone or combined with
the patching algorithm� performed before exiting. These dis-
tributions are artificially bounded by the threshold we set,
i.e., by the maximum of a thousand repetitions of the deci-
mation procedure. From these figures one can learn, for ex-
ample, how the success probability would deteriorate by tak-
ing a smaller threshold on the number of repetitions.
Consider first Fig. 2�a�, displaying the results of the com-

bined strategy for graphs of connectivity distribution q3,4
0.5. It

is clear that the almost constant plateau of success probabil-
ity is already reached around one hundred repetitions. Low-
ering the threshold on the number of repetitions to this value
would reduce the success probability stated in Table I by
roughly 1% only �more precisely 1.2% for N=1600 and
0.7% for N=100�, justifying a posteriori our choice.

Let us now compare the results obtained by using only the
decimation strategy to the ones where we also integrated the
patching procedure, i.e., Figs. 2�a� and 2�b�, respectively. For
this connectivity distribution the difference in the success
probability �the fraction of solved graphs for the threshold of
1000 repetitions� is not drastic. However, the introduction of
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FIG. 1. Average number of steps needed for the decimation
procedure to exit for graphs of different connectivity distributions
�� for q3,4

0.5, � for q3,5
0.5, and * for q4,5

0.5� and sizes. The best fit to all
data for all connectivity distributions is linear and has a slope of
0.23.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

fr
ac

tio
n

of
gr

ap
hs

no. decimation procedures

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

fr
ac

tio
n

of
gr

ap
hs

no. decimation procedures

(a)

(b)

FIG. 2. Integrated distribution of the number of decimation pro-
cedures needed to find a Hamiltonian cycle for graphs with connec-
tivity distribution q3,4

0.5 of various sizes �N increases from left to
right�. �a� With and �b� without the use of the patching procedure.
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FIG. 3. Integrated distribution of the number of decimation pro-
cedures needed to find a Hamiltonian cycle for graphs with connec-
tivity distribution q3,4

0.5 �dotted lines�, q3,5
0.5 �dashed lines�, and q4,5

0.5

�full lines� of sizes N=1600. �a� With and �b� without the use of the
patching procedure.
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the patching does reduce the median number of repetitions
before finding a Hamiltonian cycle roughly by a factor 3, as
can be seen from the shift of the distributions from one panel
to the other. Indeed, the use of the intermediate local rewir-
ing step can only enhance the probability of success of a
decimation procedure.

The dependence of these results on the connectivity dis-
tribution is illustrated in Fig. 3. Two points are worth signal-
ing for the densest graphs. The success probability �for a
maximum repetition of 1000� is largely enhanced by the lo-
cal rewiring procedure �as was already mentioned in the dis-
cussion of Table I�. Also, its deterioration by reducing the
repetition threshold is more important than for the graphs of
connectivity distribution q3,4

0.5. Indeed the plateau in Fig. 3�b�
is less flat, meaning that in this case augmenting the thresh-
old should still improve slightly the success probability.

It is not easy to assert how the efficiency of the method
evolves with the size of the graphs. The median of the dis-
tributions of the number of needed repetitions �see, for in-
stance, Fig. 2� can be fitted, on the interval of N we studied,
by a power of N with an exponent smaller than 1 �different
for the various connectivity distributions studied�. This leads
to a rough “less than cubic” estimation for the computational
cost of the �repeated� decimation strategy. For concreteness
we mention that for a typical random graph of size N
=1600 and degree distribution q3,4

0.5 our implementation takes
about 30 min to locate a Hamiltonian cycle by using the
decimation strategy, which narrows down to a mere 5 min
when local rewiring is included �here and in the following
the execution times are given for a computer with a
2.00-GHz Intel Pentium M processor and 1.5 Gbyte of
RAM�.

IV. MARKOV CHAIN MONTE CARLO ALGORITHM

A. Description of the algorithm

The second approach we describe in this section follows
an idea largely used and studied in statistical mechanics and
computer science. If one wants to sample from a given prob-
ability measure Prob�S� �, one can construct a Markov chain
which admits Prob�S� � as a unique stationary distribution �for
instance, by imposing detailed balance conditions on the
transition probabilities�. Several issues have to be addressed
for this simple idea to be turned into a practical algorithm.
One is the problem of ergodicity: the allowed transition rates
must prevent the chain from being stuck in some parts of the
configuration space apart from the interesting one which
bears the dominant contribution to the stationary measure. A
second problem is the convergence time of the chain, which
should be small for the stationary measure to be reached in a
reasonable time. A large amount of research in theoretical
computer science has been devoted to this question, with a
formal definition of the mixing time of the chain and various
methods for bounding it �30�; many results have also been
obtained from the side of statistical mechanics �31�. Finally a
compromise must be found between the simplicity of the
allowed moves in configuration space and their efficiency to
explore it. Most algorithms based on this idea are local, i.e.,
the current configuration of the chain is modified in a single

variable �or in a finite number of variables�, with rates de-
pending only on the status of nearby other variables. As a
notable exception we mention the cluster algorithms �32�,
which are, however, restricted to particular cases. It is also
important to quote improvements to the standard Monte
Carlo approach like tempering and parallel tempering �33�
that allow numerical simulations of systems with a complex
phase space �with and without quenched disorder�.

The authors of �15,34� have presented a Monte Carlo
�MC� simulation method in the context of cycles in graphs.
The approach presented here is, however, different in the
goal �we concentrate on the finding instead of the counting
problem�, and in the means. We shall use simple moves and
consider a stochastic process in the space of subgraphs where
each transition consists of the addition or the removal of a
single edge. As the initial and final configurations in such a
step can never be both unions of vertex disjoint cycles, we
have to relax the probability measure used before �cf. Eq.
�2��. We introduce instead

Prob�S� � =
1

Z
u�lSl�nS�	

i

w̃i�S� i� , �6�

where nS� is the number of disjoint components in the con-
figuration S� , �� �0,1� is an external parameter, and the ver-
tex weight w̃i now allows for open paths,

w̃i�S� i� = �
�
l��i

Sl� + �
�
l��i

Sl − 2� + ��
�
l��i

Sl − 1� . �7�

This probability law depends on three parameters: u, �, and
�. A valid configuration is characterized by its three conju-
gate observables, i.e., the total length L=�lSl of the subgraph
S� , the total number of vertices with exactly one occupied
neighboring edge n�, and the number nS� of disjoint compo-
nents of S� , respectively. Equation �2� is a special case of Eq.
�6� with �=0 and �=1. When u→ +�, �→0, and �→0, the
law �6� concentrates on the longest single cycles of the
graph, rather than the longest union of cycles.

We now construct a MC algorithm that admits Eq. �6�, for
finite values of u, �, and �, as a stationary measure. More
precisely, a Monte Carlo sweep consists of M steps, where in
each step an edge index l is drawn at random among the M
possible ones. Denoting S� the current configuration, a pos-
sible transition to the configuration S�� in which the status of
the edge variable Sl is reversed �from present to absent or
vice versa� is proposed and accepted with probability W�S�
→S���. We impose the detailed balance condition on these
transition probabilities,

W�S� → S���Prob�S� � = W�S�� → S� �Prob�S��� . �8�

The fact that the vertex weight w̃i strictly allows only three
different vertex neighborhoods reduces the number of pos-
sible transitions drastically. We illustrate the nine possible
edge situations, also referred to as edge states, in Fig. 4,
along with the only nonzero transition rates. As in every
single spin flip Markov chain, there is still some freedom in
the choice of the transition probabilities: the detailed balance
condition only constrains the ratio of the transition probabili-
ties between two mutually accessible configurations. As we
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aim at finding configurations of large lengths, we set the
acceptance probability to 1 for allowed transitions increasing
the number of present edges, which automatically fixes the
transition probability of the reversed move �see Fig. 4�. This
choice is of course possible only for values of the parameters
u, �, and � such that these probabilities are smaller than 1.

It can be more intuitive to envision the probability mea-
sure �6� as proportional to exp�−E�S� ��, where the “energy” E
is infinite for forbidden configurations, and otherwise equal
to

Eu,�,��S� � = − 
N − �
l

Sl�ln u − �nS� − 1�ln � − n� ln � . �9�

In the relevant situation here, u	1 and � ,�
1, a Hamil-
tonian cycle of a graph, provided it exists, corresponds to a
ground state of this energy function �of zero energy with the
normalizations we chose�.

A typical approach for finding low energy configurations
in a complex system is to use a simulated annealing �35�
version of an MC algorithm �or an implementation of paral-
lel tempering �33��. Starting from a random configuration,
one slowly reduces the value of the parameter conjugate to
the energy function �typically called the temperature� in or-
der to obtain a state of minimal energy. In our specific case
we have a very complex form of the energy function �9�, and
setting up an effective scheduling for the three relevant ex-
ternal parameters would not be straightforward. We choose
instead to start the MC algorithm with the initially empty
configuration and run it at fixed parameter values. Long
�possibly Hamiltonian� cycles thus appear as fluctuations
around the equilibrium state which is determined by the cho-
sen set of parameters values.

The rejection rate of the stochastic process we have de-
fined is very high: we typically get average acceptance rates
of the order of O�1/M�. Because of that the implementation
of a rejection-free version of the algorithm, inspired by the
well-known N-fold algorithm �36�, is of very substantial
help. At each time step we maintain a list of all possible
moves along with their acceptance probability. Now there is
no rejection but the clock is stochastic. The technical details
about the necessary bookkeeping are presented in Appendix
B.

The combination of the a priori simplistic approach of
working at a fixed value of the external parameters and the
improvement due to the rejection-free implementation is
quite efficient in practice, as will become clear in the next
section.

B. Numerical results

The stationary distribution �cf. Eq. �6�� reached at long
times by the above described random walk has a positive
probability on the set of the longest cycles of the graph under
study. If the graph is Hamiltonian, at some point the Markov
chain will come across one of the Hamiltonian cycles, pro-
viding a positive answer to the existence problem and solv-
ing at the same time the finding one. How fast such a Hamil-
tonian configuration is encountered depends on the values of
the parameters defining the transition probabilities. We find
that in the regime of sizes and connectivity distributions we
studied, the choices u�103, ��0.99, and ��0.1 led to sur-
prisingly good results.

Indeed, running the Monte Carlo algorithm �in its
rejection-free implementation� on the same set of graphs that
was studied in the previous section,2 we find a Hamiltonian
cycle in all of them in a reasonable time frame, including
those for which the decimation strategy was not able to
prove their Hamiltonianicity.

It is, however, expected that the external parameters
should be tuned with the size of the graphs. We plot in Fig. 5
the �median� number of moves performed before the discov-
ery of a Hamiltonian circuit for graphs drawn from the three
connectivity distribution ensembles of various sizes. This
grows exponentially with the sizes of the graphs, consistent
with the picture that Hamiltonian cycles are found as a fluc-

2For the largest size N=1600, we restricted the sample of graphs
to those on which the decimation strategy had proved unsuccessful.

FIG. 4. Possible states j of the central edge with all possible corresponding nonzero transition probabilities wj→i. The bold lines stand for
an edge, path, or cycle which is present, the thin lines mean it is absent. Two thin parallel lines separating present edges or paths signify that
those edges or paths are disconnected.
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FIG. 5. Median of the number of moves performed before the
discovery of a Hamiltonian circuit for various connectivity distribu-
tions �q3,4

0.5: dotted line ���; q3,5
0.5: dashed line ���; q4,5

0.5 full line ����
in function of the size of the graphs.
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tuation of the observables L, nS�, and n� from their typical
values.

For comparison with the decimation strategy, we mention
it takes about 40 min to find a Hamiltonian cycle using the
MC algorithm with reasonably optimized parameter values
for the same graph of size N=1600 and degree distribution
q3,4

0.5 of the previous section. Of course, this rather good result
does not include the time it takes to find these optimized
values for the three parameters u, �, and �.

V. CONCLUSIONS

We have introduced two distinct methods to locate long
cycles in graphs and tested them on random graphs of mini-
mal degree 3. For all of the many instances we investigated,
at least one of the two methods was able to construct a
Hamiltonian cycle. After the nonrigorous statistical mechan-
ics study of �9�, this constitutes another constructive confir-
mation of the conjecture put forward in �3�, according to
which these graphs are, with high probability, Hamiltonian.

The two algorithms presented in this paper are of a very
different nature, it is thus difficult to assert their relative
efficiency. The belief inspired decimation procedure of Sec.
III has the advantage of versatility: there are few parameters
and their influence is not crucial. Moreover, its computa-
tional cost on this family of sparse random graphs seems to
grow polynomially with the number of vertices. Its caveat is
that it does not always construct a Hamiltonian cycle �even if
constructing a cycle of extensive length can already be seen
as a positive result� of the random graphs on which we tested
it. This motivated the development of the Monte Carlo ap-
proach of Sec. IV, which turned out to be successful on every
investigated graph. This method relies on a fortunate tradeoff
between the simplicity of the underlying idea and the effi-
ciency of the elaborate �rejection-free� implementation this
simplicity allows. At variance with the decimation proce-
dure, this method is highly sensitive to its parameters, that
have to be carefully determined by trial and error.

We see as a possible continuation of this work a more
systematic investigation of the Monte Carlo method, in par-
ticular on the automatic adjustment of the optimal param-
eters with the size of the graphs and the connectivity distri-
bution. In this respect tempering and parallel tempering �33�
could constitute useful approaches to this issue.

Another possible direction for future work would be to
apply these algorithms to real-world networks �12�. In this
context an interesting issue would be the study of intermedi-
ate length circuits, i.e., those which are too long to be found
by exhaustive enumeration, yet much shorter than the total
size of the graphs �this intermediate scale seems the most
relevant to discuss, for example, routing in Internet net-
works�. The two methods presented here can be easily
adapted to tackle this problem.

Finally, we mention that the largest graph on which we
found a Hamiltonian cycle in a reasonable CPU time
�30 min, by using the decimation strategy combined with the
local rewiring� was a random mixture graph of size N
=12 800 and degree distribution q3,4

0.5.

This work was supported by EVERGROW, Integrated
Project No. 1935 in the complex systems initiative of the
Future and Emerging Technologies directorate of the IST
Priority, EU Sixth Framework.

APPENDIX A: PATCHING VERTEX DISJOINT CYCLES
BY LOCAL REWIRING

Here we describe the “patching” procedure we apply to
cycle covers made of several vertex disjoint cycles obtained
at the end of a decimation procedure. It aims at uniting these
distinct cycles into a single Hamiltonian one.

As mentioned in Sec. III B, the cycle covers we find are
typically made of a long �extensive� cycle, and a few small
ones. This suggests that in order to unite them we should
look for some simple displacement of the edges around the
small cycles in order to connect them among themselves and
with the longest one. The patching procedure we adopt con-
sists in removing two or more edges belonging to different
cycles of the considered cycle cover. At the same time, we
introduce an equal amount of edges which were not present
in the original cycle cover subgraph �but are part of the
graph�, which close the gaps we created in the vertex disjoint
cycles and unite them into one cycle. For example, given the
cycle cover presented on the left of Fig. 6 we could trans-
form it into the Hamiltonian cycle presented to its right by
changing the edge variables of the edges �1,2�, �2,5�, �5,6�,
�6,7�, �7,9�, and �1,9� to their complementary value. We will
refer to this process as local rewiring.

The problem now is to determine a strategy for finding
this appropriate set of edges which allows us to change a
cycle cover into a Hamiltonian cycle after having performed
this local reconnection. We explain our rules on the example
drawn in Fig. 6.

We start from some arbitrary vertex belonging to the
smallest cycle of the cycle cover, say 1. If vertex 1 has no
neighboring edge of which the other ending vertex lies on a
different cycle of the cycle cover we are considering, we
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(b)

FIG. 6. Local rewiring in order to unite the cycles of a cycle
cover �a� into a Hamiltonian cycle �b�.
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move to the next vertex on the cycle we started from �e.g.,
9�. In case, however, it does �as is the case in Fig. 6 due to
the presence of edge �1,2��, we check whether the same holds
for one of the neighboring edges �3 and 5� of the vertex on
the new cycle, i.e., 2. If this edge leads to the original cycle
we started from �which is clearly not the case for edge �3,4�,
but would be for �5,9� or �5,8� if they were present�, and if it
ends in a neighboring vertex of the original vertex we started
from �1�, we have found a valid update: it consists in chang-
ing the values of all edge variables included in the path going
from the first to this last vertex. For example, if the edge
�5,9� were part of the graph we would have found a subset of
edges �i.e., �1,2�, �2,5�, �5,9�, and �1,9�� for which, if we set
their corresponding edge variables to their complementary
value, we would have united two of the three cycles. In such
a case, i.e., when after some local rewiring we have reduced
the number of cycles in the cycle cover, but not yet to just 1,
we go to the next vertex on the now extended cycle we
started from �which would then be vertex 3�, and follow the
same rules in order to unite it to the still remaining vertex-
disjoint cycles. This is not the case in the figure: edge �5,6�
brings us yet to another cycle and again we look for a way to
reach a different cycle through the present, neighboring
edges of this new vertex �6�. We continue this procedure
until we get back to the original cycle, and make sure we
never cross the same cycle twice, as it would not lead to a
unique Hamiltonian cycle.

We do this operation for all the vertices belonging to the
smallest cycle �which throughout the local rewiring could
grow in length�. The number of operations we need to per-
form for each one of these vertices depends on its degree,
which influences the number of edges to other cycles we
need to consider, and on the number of cycles composing the
cycle cover. As we only considered graphs with a maximum
degree up to 5, the number of edges of a vertex leading to
another cycle is not larger than 3. Due to the fact that cycle
covers typically contain one large cycle, the total number of
cycles composing it is usually quite low �it never exceeded
14 for all the graphs we investigated�. Hence the local rewir-
ing requires a number of operations negligible compared to
the cost of the decimation procedure.

Even though it turns out to be quite effective in practice,
we must stress that the patching procedure we presented
here, i.e., the local rewiring of the edges, is rather restrictive.
Its only goal is to immediately try to reduce the number of
cycles composing the cycle cover, not to sample the set of all
cycle covers.

APPENDIX B: DETAILS ON THE IMPLEMENTATION OF
THE REJECTION FREE ALGORITHM

As mentioned in Sec. IV, an MC sweep in the MC algo-
rithm with rejection consists in proposing M changes among
the M edges. The probability with which a move is accepted
depends on the probability law �6� according to the detailed
balance condition. We have explicitly given the nonzero tran-
sition rates in Fig. 4. It turns out that the actual number of
accepted moves during a sweep is only of order O�1� for all
graphs we investigated.

An N-fold �36�, rejection-free version of the Monte Carlo
simulation helps to alleviate this problem. Rather than pro-
posing a change which is then possibly discarded, we choose
a change of nonzero probability and compute the �random�
number of rejections that would have occurred before its
acceptation. To this aim we maintain lists of the edges in a
given state j �see Fig. 4� and the sizes nj of these lists. The
escape probability from the current configuration is then sim-
ply given by

Pesc =
1

M
�
S��

W�S� → S��� =
1

M
�
j=1

9

njwj , �B1�

where we denote wj �instead of wj→i in Fig. 4� the probabil-
ity with which an edge in state j changes status.

Each proposed �and necessarily accepted� move of the
rejection free MC algorithm now consists in drawing an edge
state i with probability niwi / �MPesc�. The edge that will be
changed is uniformly drawn from the ith list and the clock is
increased by an amount −ln r / �MPesc�, where r is a uniform
random variable drawn in �0,1�.

The bookkeeping of the state of the edges is negligible in
terms of space requirements. There is, however, an overhead
in the number of operations performed at each step: the
modification of edge l changes the state of other edges. Most
of the time these are only the direct neighbors of l, which are
few for the low degree graphs we investigate. However,
when breaking up a cycle into a path or vice versa �1↔5�,
all edges belonging to the cycle have to be updated. Note
that even in the very unrealistic case where long cycles �of
order N� are broken or created at each step, this overhead is
still compensated by the gain with respect to the usual MC
algorithm where the acceptance rate is of order 1 /M.

Figure 7 contains some numerical evidence that the
N-fold MC is indeed faster than the rejection MC. The dis-
tribution of the time �number of sweeps for the simple MC or
stochastic clock for the rejection-free version� at which a
Hamiltonian cycle is found is almost the same for both
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FIG. 7. Distribution of the solution time, i.e., the time it takes to
find a Hamiltonian cycle, in stochastic MC time for N-fold MC
�long-dashed line� and MC sweeps for rejection MC �short-dashed
line�, of the number of moves performed �full line for N-fold MC,
dotted line for rejection MC� and of the total number of proposed
moves in rejection MC �dashed-dotted line� for graphs of size N
=800 with degree distribution q3,4

0.5.
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algorithms, as it should be. The same conclusion holds for
the number of moves actually performed before this event.
However, the number of proposed moves in the rejection MC
is higher by a large factor, inversely proportional to the ac-
ceptance rate.

The computational overhead due to the update of the edge
states does not spoil this gain: it takes 43 s for the rejection-
free implementation to find a Hamiltonian cycle in an exem-
plary graph of size N=800 and degree distribution q3,4

0.5, while
the rejection MC requires more than 10 h.
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